Alfalfa (Medicago sativa L.)
Shen et al. (2020) genome assembly available here.
Karyotype: 2n=2x=16; cultivated 2n=4x=32
Blondon F, Marie D, Brown S et al. (1994). Genome size and base composition in Medicago sativa and M. truncatula species. Genome 37: 264-270. link
Barnes DK, Goplen BP, Baylor JE. (1988). Highlights in
the USA and Canada. In: Hanson, AA, Barnes DK, and Baylor RR (eds.)
Alfalfa and Alfalfa improvement. Journal of the American Society of
Agronomy Monograph 29: 1-24. link
Genome size (1C, Mb): 1682 (2n=4x=32)
Pustahija F, Brown SC,
Bogunic F et al. (2013). Small genomes dominate in plants
growing on serpentine soils in West Balkans, an exhaustive study of 8
habitats covering 308 taxa. Plant
and Soil 373: 427-453. link
Genetic maps:
He F, Long R, Zhang T et al. (2020). Quantitative trait locus mapping of yield and plant height in autotetraploid alfalfa (Medicago sativa L.). The Crop Journal 8(5): 812-818. link
He F, Kang J, Zhang F et al. (2019). Genetic mapping of leaf-related traits in autotetraploid alfalfa (Medicago sativa L.). Molecular Breeding 39: 147. link
Li X, Wei Y, Acharya A et al. (2014). A saturated genetic linkage map of autotetraploid Alfalfa (Medicago sativa L.) developed using genotyping-by-sequencing is highly syntenous with the Medicago truncatula. Genome. G3 4: 1971-1979. link
Kaló P, Endre G, Zimánneyi L et al. (2000). Construction of an improved linkage map of diploid alfalfa (Medicago sativa). Theoretical and Applied Genetics 100: 641-657. link
Source: en.wikipedia.org
cpDNA sequencing: 128,574 bp
Wu S, Chen J, Li Y et al. (2021). Extensive genomic rearrangements mediated by repetitive sequences in plastomes of Medicago and its relatives. BMC Plant Biology 21: 1-16. link
Yang C, Wu X, Guo X et al. (2019). The complete chloroplast genome of Medicago sativa cv. Hangmu No.1, a plant of space mutation breeding. Mitochondrial DNA Part B 4: 603-604. link
Tao X, Ma L, Zhang Z et al. (2017). Characterization of the complete chloroplast genome
of alfalfa (Medicago
sativa)
(Leguminosae). Gene Reports 6: 67-73. link
Whole genome sequencing:
Shen C, Du H, Chen Z et al. (2020). The chromosome-level genome sequence of the autotetraploid alfalfa and resequencing of core germplasms provide genomic resources for Alfalfa research. Molecular Plant. link
Transcriptome sequencing:
Liu J, Wang T, Weng Y et al. (2022). Identification and Characterization of Regulatory Pathways Controlling Dormancy Under Lower Temperature in Alfalfa (Medicago sativa L.). Frontiers in Plant Science 1930. link
Li J, Ma M, Sun Y et al. (2022). Comparative physiological and transcriptome profiles uncover salt tolerance mechanisms in Alfalfa. Frontiers in Plant Science 1930. link
Wang X, Kang W, Wu F et al. (2022). Comparative transcriptome analysis reveals new insight of alfalfa (Medicago sativa L.) cultivars in response to abrupt freezing stress. Frontiers in Plant Science 937. link
Bhattarai S, Fu Y-B, Coulman B et al. (2021). Transcriptomic analysis of differentially expressed genes in leaves and roots of two alfalfa (Medicago sativa L.) cultivars with different salt tolerance. BMC Plant Biology 21:1-16. link
Qiaoli M, Xie Y, Xu X et al. (2021). Comparative analysis of alfalfa
(Medicago sativa L.) seedling transcriptomes reveals genotype-specific
drought tolerance mechanisms. Plant Physiology and Biochemistry. link
Ma D, Liu B, Ge L et al. (2021). Identification and characterization of regulatory pathways involved in early flowering in the new leaves of alfalfa (Medicago sativa L.) by transcriptome analysis. BMC Plant Biology 21:1-14. link
Duan HR, Wang LR, Cui GX et al. (2020). Identification of the regulatory networks and hub genes controlling alfalfa floral pigmentation variation using RNA-sequencing analysis. BMC Plant Biology 20:1-17. link
Yuan J, Sun X, Guo T et al. (2020). Global transcriptome analysis of alfalfa reveals six key biological processes of senescent leaves. PEERJ 8: e8426. link
Chao Y, Yuan J, Guo T et al. (2019). Analysis of transcripts and splice isoforms in Medicago sativa L. by single-molecule long-read sequencing. Plant Molecular Biology 99: 219-235. link
Luo D, Zhou Q, Wu Y et al. (2019). Full-length transcript sequencing and comparative transcriptomic analysis to evaluate the contribution of osmotic and ionic stress components towards salinity tolerance in the roots of cultivated alfalfa (Medicago sativa L.). BMC Plant Biology 19: 32. link
Luo D, Wu Y, Liu J et al. (2019). Comparative transcriptomic and physiological analyses of Medicago sativa L. indicates that multiple regulatory networks are activated during continuous aba treatment. International Journal of Molecular Sciences 20: 47. link
Zeng N, Yang Z, Zhang Z et al. (2019). Comparative transcriptome combined with proteome analyses revealed key factors involved in Alfalfa (Medicago sativa) response to waterlogging stress. International Journal of Molecular Sciences 20: 1359. link
Tu XB, Zhao HL, Zhang ZH (2018). Transcriptome approach to understand the potential mechanisms of resistant and susceptible alfalfa (Medicago sativa L.) cultivars in response to aphid feeding. Journal of Integrative Agriculture 17: 2518-2527. link
O'Rourke JA, Fu F, Bucciarelli B et al. (2015). The Medicago sativa gene index 1.2: a web-accessible gene expression atlas for investigating expression differences between Medicago sativa subspecies. BMC Genomics 16: 502. link
Postnikova
OA, Hult M, Shao J et al. (2015). Transcriptome analysis of resistant
and susceptible alfalfa cultivars infected with root-knot nematode Meloidogyne incognita. PLoS One 10: e0118269. link
Zhang S, Shi Y, Cheng N et al. (2015). De novo characterization of fall dormant and nondormant alfalfa (Medicago sativa L.) leaf transcriptome and identification of candidate genes related to fall dormancy. PLoS One, 10: e0122170. link
Liu Z, Chen T, Ma L et al. (2013). Global transcriptome sequencing using the illumina platform and the development of EST-SSR markers in autotetraploid Alfalfa. PloS One 8: e83549. link
Han Y, Kang Y, Torres-Jerez I et al. (2011). Genome-wide SNP discovery in tetraploid alfalfa using 454 sequencing and high resolution melting analysis. BMC Genomics 12: 1-11. link
Yang
SS, Tu ZJ, Cheung F et al. (2011). Using RNA-seq for gene
identification, polymorphism detection and transcript profiling in two
alfalfa genotypes with divergent cell wall composition in stems. BMC
Genomics 12: 1-19. link
Yang SS, Xu WW, Tesfaye M et al. (2009). Single-feature polymorphism discovery in the transcriptome of tetraploid Alfalfa. Plant Genome 2: 224-232. link
GWAS:
He F, Wei C, Zhang Y et al. (2022). A Genome-wide association analysis coupled with transcriptome analysis reveals candidate genes related to salt stress in Alfalfa (Medicago sativa L.). Frontiers in Plant Science 12: 826584-826584. link
Lin S, Medina CA, Boge B et al. (2020). Identification of genetic loci associated with forage quality in response to water deficit in autotetraploid alfalfa (Medicago sativa L.). BMC Plant Biology 20(1): 1-18. link
Wang Z, Wang X, Zhang H et al. (2020). A genome-wide association study approach to the identification of candidate genes underlying agronomic traits in alfalfa (Medicago sativa L.). Plant Biotechnology Journal 18(3): 611-613. link
Shen C, Du H, Chen Z et al. (2020). The chromosome-level genome sequence of the autotetraploid alfalfa and resequencing of core germplasms provide genomic resources for Alfalfa research. Molecular Plant. link
Kang Y, Torres-Jerez I, An Z et al. (2018). Genome-wide association analysis of salinity responsive traits in Medicago truncatula. Plant, Cell & Environment 42: 1513-1531. link
Liu
XP, Yu LX (2017). Genome-Wide Association Mapping of Loci Associated
with Plant Growth and Forage Production under Salt Stress in Alfalfa
(Medicago
sativa L.).
Frontiers in Plant Science 8:853. link
Kang
Y, Sakiroglu M, Krom M et al. (2015). Genome-wide association of
drought-related and biomass traits with HapMap SNPs in Medicago
truncatula. Plant, Cell &
Environment 38: 1997-2011. link
Stanton-Geddes J,
Paape T, Epstein B et al. (2013). Candidate genes and genetic
architecture of symbiotic and agronomic traits revealed by
whole-genome, sequence-based association genetics in Medicago
truncatula. PLoS One 8:e65688. link